3.631 \(\int \frac{(a B+b B \cos (c+d x)) \sec ^{\frac{3}{2}}(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=266 \[ \frac{2 B (a-b) \sqrt{a+b} \sqrt{\cos (c+d x)} \csc (c+d x) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right )}{a^2 d \sqrt{\sec (c+d x)}}-\frac{2 B \sqrt{a+b} \sqrt{\cos (c+d x)} \csc (c+d x) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right )}{a d \sqrt{\sec (c+d x)}} \]

[Out]

(2*(a - b)*Sqrt[a + b]*B*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b
]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(
a - b)])/(a^2*d*Sqrt[Sec[c + d*x]]) - (2*Sqrt[a + b]*B*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[a
 + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]
*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*d*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.370149, antiderivative size = 266, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 38, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.132, Rules used = {21, 4222, 2801, 2816, 2994} \[ \frac{2 B (a-b) \sqrt{a+b} \sqrt{\cos (c+d x)} \csc (c+d x) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right )}{a^2 d \sqrt{\sec (c+d x)}}-\frac{2 B \sqrt{a+b} \sqrt{\cos (c+d x)} \csc (c+d x) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right )}{a d \sqrt{\sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[((a*B + b*B*Cos[c + d*x])*Sec[c + d*x]^(3/2))/(a + b*Cos[c + d*x])^(3/2),x]

[Out]

(2*(a - b)*Sqrt[a + b]*B*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b
]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(
a - b)])/(a^2*d*Sqrt[Sec[c + d*x]]) - (2*Sqrt[a + b]*B*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[a
 + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]
*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*d*Sqrt[Sec[c + d*x]])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 4222

Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sin[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rule 2801

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :
> Dist[1/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x], x] - Dist[b/(a - b), Int[(1 +
 Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] &
& NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2816

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*
Tan[e + f*x]*Rt[(a + b)/d, 2]*Sqrt[(a*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(a*(1 + Csc[e + f*x]))/(a - b)]*Ellipt
icF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/(Sqrt[d*Sin[e + f*x]]*Rt[(a + b)/d, 2])], -((a + b)/(a - b))])/(a*f), x] /
; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 2994

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*A*(c - d)*Tan[e + f*x]*Rt[(c + d)/b, 2]*Sqrt[(c*(1 + Csc[e + f*x]))/(c
- d)]*Sqrt[(c*(1 - Csc[e + f*x]))/(c + d)]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/(Sqrt[b*Sin[e + f*x]]*Rt[
(c + d)/b, 2])], -((c + d)/(c - d))])/(f*b*c^2), x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] &&
 EqQ[A, B] && PosQ[(c + d)/b]

Rubi steps

\begin{align*} \int \frac{(a B+b B \cos (c+d x)) \sec ^{\frac{3}{2}}(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx &=B \int \frac{\sec ^{\frac{3}{2}}(c+d x)}{\sqrt{a+b \cos (c+d x)}} \, dx\\ &=\left (B \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\cos ^{\frac{3}{2}}(c+d x) \sqrt{a+b \cos (c+d x)}} \, dx\\ &=-\left (\left (B \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)} \sqrt{a+b \cos (c+d x)}} \, dx\right )+\left (B \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1+\cos (c+d x)}{\cos ^{\frac{3}{2}}(c+d x) \sqrt{a+b \cos (c+d x)}} \, dx\\ &=\frac{2 (a-b) \sqrt{a+b} B \sqrt{\cos (c+d x)} \csc (c+d x) E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right ) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (1+\sec (c+d x))}{a-b}}}{a^2 d \sqrt{\sec (c+d x)}}-\frac{2 \sqrt{a+b} B \sqrt{\cos (c+d x)} \csc (c+d x) F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{a+b} \sqrt{\cos (c+d x)}}\right )|-\frac{a+b}{a-b}\right ) \sqrt{\frac{a (1-\sec (c+d x))}{a+b}} \sqrt{\frac{a (1+\sec (c+d x))}{a-b}}}{a d \sqrt{\sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 6.0999, size = 298, normalized size = 1.12 \[ B \left (\frac{2 \sin (c+d x) \sqrt{\sec (c+d x)} \sqrt{a+b \cos (c+d x)}}{a d}-\frac{2 \sqrt{\cos ^2\left (\frac{1}{2} (c+d x)\right ) \sec (c+d x)} \left (\cos (c+d x) \tan \left (\frac{1}{2} (c+d x)\right ) \sec ^2\left (\frac{1}{2} (c+d x)\right ) (a+b \cos (c+d x))-2 a \sqrt{\frac{\cos (c+d x)}{\cos (c+d x)+1}} \sqrt{\frac{a+b \cos (c+d x)}{(a+b) (\cos (c+d x)+1)}} F\left (\sin ^{-1}\left (\tan \left (\frac{1}{2} (c+d x)\right )\right )|\frac{b-a}{a+b}\right )+2 (a+b) \sqrt{\frac{\cos (c+d x)}{\cos (c+d x)+1}} \sqrt{\frac{a+b \cos (c+d x)}{(a+b) (\cos (c+d x)+1)}} E\left (\sin ^{-1}\left (\tan \left (\frac{1}{2} (c+d x)\right )\right )|\frac{b-a}{a+b}\right )\right )}{a d \sqrt{\sec ^2\left (\frac{1}{2} (c+d x)\right )} \sqrt{a+b \cos (c+d x)}}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[((a*B + b*B*Cos[c + d*x])*Sec[c + d*x]^(3/2))/(a + b*Cos[c + d*x])^(3/2),x]

[Out]

B*((2*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(a*d) - (2*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x
]]*(2*(a + b)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*El
lipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] - 2*a*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Co
s[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] + Cos[c + d*x]
*(a + b*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(a*d*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[(c + d*x)/2
]^2]))

________________________________________________________________________________________

Maple [B]  time = 0.583, size = 621, normalized size = 2.3 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*B+b*B*cos(d*x+c))*sec(d*x+c)^(3/2)/(a+b*cos(d*x+c))^(3/2),x)

[Out]

-2*B/d/a*((cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(
d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)*sin(d*x+c)*a-(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a
+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)*sin
(d*x+c)*a-(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(
d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)*sin(d*x+c)*b+a*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*
(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c)-(
cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin
(d*x+c),(-(a-b)/(a+b))^(1/2))*a*sin(d*x+c)-(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(
d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*b*sin(d*x+c)+b*cos(d*x+c)^2+cos(d*x+
c)*a-b*cos(d*x+c)-a)*cos(d*x+c)*(1/cos(d*x+c))^(3/2)/(a+b*cos(d*x+c))^(1/2)/sin(d*x+c)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B b \cos \left (d x + c\right ) + B a\right )} \sec \left (d x + c\right )^{\frac{3}{2}}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*cos(d*x+c))*sec(d*x+c)^(3/2)/(a+b*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((B*b*cos(d*x + c) + B*a)*sec(d*x + c)^(3/2)/(b*cos(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{B \sec \left (d x + c\right )^{\frac{3}{2}}}{\sqrt{b \cos \left (d x + c\right ) + a}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*cos(d*x+c))*sec(d*x+c)^(3/2)/(a+b*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

integral(B*sec(d*x + c)^(3/2)/sqrt(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*cos(d*x+c))*sec(d*x+c)**(3/2)/(a+b*cos(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B b \cos \left (d x + c\right ) + B a\right )} \sec \left (d x + c\right )^{\frac{3}{2}}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*cos(d*x+c))*sec(d*x+c)^(3/2)/(a+b*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((B*b*cos(d*x + c) + B*a)*sec(d*x + c)^(3/2)/(b*cos(d*x + c) + a)^(3/2), x)